Министерство науки и высшего образования Российской Федерации

Муниципальное бюджетное учреждение дополнительного образования «Центр детского научного и инженерно-технического творчества» города Невинномысска

СОГЛАСОВАНО	УТВЕРЖДАН		
Педагогическим советом			Директор
Протокол №			Т.В. Чилхачоян
от «» 2025 г.	«	>>>	2025 г

ДОПОЛНИТЕЛЬНАЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ПРОГРАММА ТЕХНИЧЕСКОЙ НАПРАВЛЕННОСТИ

Инженерное дело

5-6 класс Срок реализации программы - 2 года

Авторы-составители: Шенцов И.В., педагог

СОДЕРЖАНИЕ

- 1. Пояснительная записка
- 2. Учебно-тематический план и содержание
- 3. Организационно-педагогические условия реализации программы
- 4. Список литературы
- 5. Формы контроля и оценочные материалы
- 6. Приложение

1. ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Дополнительная общеобразовательная программа технической направленности «Инженерное дело» (далее — программа) предназначается для обучающихся/воспитанников 5–6 классов образовательных центров Фонда Андрея Мельниченко (далее — ОЦФ) и имеет пропедевтический (ознакомительный) уровень для 5 класса и базовый уровень для 6 класса.

Актуальность программы обусловлена требованиями современного общества работы формированию системы одаренными детьми условиях c дополнительного образования. Отличительной особенностью данного курса является его пропедевтическая направленность для учащихся 5 классов, что является базой для дальнейшего успешного освоения базового уровня курса, а программирования, робототехники, химии, физики, инженерных также специальностей.

Программа разработана на основе следующих документов:

- закон Российской Федерации «Об образовании» (Федеральный закон от 29 декабря 2012 г. № 273-ФЗ);
- приказ Министерства просвещения РФ от 9 ноября 2018 г. № 196 «Об утверждении порядка организации и осуществления образовательной деятельности по дополнительным общеобразовательным программам»;
- концепция развития дополнительного образования детей (Распоряжение Правительства РФ от 4 сентября 2014 г. №1726-р);
- постановление Главного государственного санитарного врача от 28.09.2020 г. № 28 «Об утверждении санитарных правил СП 2.4.3648-20 «Санитарно-эпидемиологические требования к организациям воспитания и обучения, отдыха и оздоровления детей и молодёжи»;
- постановление Главного государственного санитарного врача от 28.01.2021 г. № 2 «Об утверждении санитарных правил СанПиН 1.2.3685-21 «Гигиенические нормативы и требования к обеспечению безопасности и (или) безвредности для человека факторов среды обитания».

Педагогическая целесообразность программы обуславливается стимулированием интересов учащихся к дисциплинам технического направления, экспериментальным исследованиям, проектной деятельности и состоит в обеспечении адаптации школьников к жизни в обществе, профессиональной ориентации, а также в выявлении и поддержке учащихся, проявивших выдающиеся способности.

Программа может быть реализована с помощью дистанционных технологий, технологий смешанного и модульного обучения.

Цель программы — практическое ознакомление с основами мехатронных и робототехнических систем, их изучение и овладение методами и средствами их проектирования, моделирования, экспериментального исследования, отладкой и эксплуатацией.

Задачи программы:

- обеспечить усвоение базовых инженерных знаний;
- сформировать и развить творческое техническое мышление и навыки самостоятельного конструирования мехатронных и робототехнических систем, разработку новых устройств и программных средств;
- сформировать навыки использования математического аппарата и основных естественнонаучных законов для решения практических и экспериментальных задач в робототехнике;
- развить одарённость и творческий потенциал учащихся, способных к научному поиску.

Объем, содержание и планируемые результаты освоения программы определены исходя из особенностей одарённых учащихся в области технических наук. Вместе с тем при определении объёма и содержания программы учитывались сложность конкретной темы по отношению к другим темам раздела, возможность приобретения учащимися практического опыта и осуществления межпредметных связей. Порядок тем и блоков, представленный в учебно-тематическом плане, допускается корректировать в пределах программы класса. По усмотрению педагога возможна параллельная подача тем и блоков в рамках учебной недели.

К отличительным особенностям программы относится уникальный набор направлений и дисциплин, позволяющий учащимся получить комплексную инженерную, общетехническую и междисциплинарную подготовку. Элементы кибернетики, механики, деталей машин, 3D графики, электротехники, программирования и теории автоматического управления адаптированы для уровня восприятия учащихся, что позволяет начать подготовку инженерных кадров уже с 5 класса.

Срок реализации программы – 2 года.

Продолжительность учебного года – 64 недели.

Общий объём – 128 часов.

Формы и режим занятий

Занятия проводятся в постоянных группах учащихся, сформированных по возрастному принципу (оптимальное количество участников в группе — 12–15 человек), в форме теоретических, практических и индивидуальных занятий, а также консультаций (проектная деятельность, подготовка к олимпиадам, конференциям):

для 5-6 классов – 2 часа в неделю;

Ожидаемые результаты программы:

- 1. Самостоятельное проектирование и конструирование роботов и робототехнических систем промышленного и непромышленного назначения.
- 2. Самостоятельная разработка программно-алгоритмического обеспечения для управления робототехническими системами.
- 3. Способность понимать используемые современные методы, алгоритмы, модели и технические решения в мехатронике, робототехнике и знать области их применения, в том числе в автоматизированных производствах.

Результаты освоения программы определяются с использованием 5-ти балльной (баллы от 1 до 5) системы оценивания.

Контроль освоения программы – текущий, промежуточный и итоговый.

Текущий контроль осуществляется на занятиях (ответы у доски, письменные работы, практические работы и устные ответы, домашние задания); защита практической работы или письменный и/или устный опрос после изучения блока или набора взаимосвязанных блоков, выделенных педагогом.

Промежуточный контроль проводится в соответствии с учебнотематическим планом после освоения темы или набора взаимосвязанных тем в форме контрольной работы, содержащей устную и практическую часть, или защиты практической работы.

Итоговый контроль проводится в форме экзамена после каждого года обучения, включающего в себя теоретическую и практическую части или защиту учебного творческого проекта (см. Приложение A).

Программой предусмотрено использование тестов для итогового контроля либо защита индивидуального творческого проекта.

2 УЧЕБНО-ТЕМАТИЧЕСКИЙ ПЛАН И СОДЕРЖАНИЕ

Учебно-тематический план 5 класса

[5 класс, 64 часов, 2 часа в неделю]

N₂	Наименование тем и блоков	Общее количество учебных часов	Теори я	Практик а
	Тема 1 Введение в робототехнику	12	6	4
Блок 1	Техника безопасности	2	2	0
Блок 2	Основы изобретательской деятельности	4	2	2
Блок 3	Основы подготовки презентаций	4	2	2
	Контрольная работа по теме 1	2		
	Тема 2 Алгоритм. Программа	12	6	4
Блок 1	Микроконтроллеры. Основные понятия	2	2	0
Блок 2	Алгоритм. Программа	2	2	0
Блок 3	Аналоговые и цифровые сигналы	4	2	2
Блок 4	Транзисторный ключ	2	0	2
	Контрольная работа по теме 2	2		
	Тема 3 Применение микроконтроллеров в робототехнике	14	2	10
Блок 1	Схемы электрического питания	2	2	0

№	Наименование тем и блоков	Общее количество учебных часов	Теори я	Практик а
Блок 2	Управление внешними устройствами	4	0	4
Блок 3	Обработка сигналов датчиков	2	0	2
Блок 4	Алгоритмы движения роботов	4	0	4
	Контрольная работа по теме 3	2		
	Тема 4 Механика и динамика роботов	12	4	6
Блок 1	Основные понятия кинематики	2	2	0
Блок 2	Простые механические системы	8	2	6
	Контрольная работа по теме 4	2		
	Тема 5 Основы начертательной геометрии, инженерной графики и САПР	12	2	8
Блок 1	Эскизы и чертежи	2	0	2
Блок 2	Основы работы в графических редакторах	2	0	2
Блок 3	Кинематические схемы	2	0	2
Блок 4	Геометрические способы передачи информации	4	2	2
P	Контрольная работа по теме 5	2		
	Итоговая контрольная работа	2		
	Всего	64	23	32

3. СОДЕРЖАНИЕ ПРОГРАММЫ 5 КЛАСС

Тема 1. ВВЕДЕНИЕ В РОБОТОТЕХНИКУ

Блок 1. Техника безопасности.

Оборудование учебного кабинета. Техника безопасности. Средства индивидуальной защиты. Инструменты. Станки. Правила поведения на занятиях.

Блок 2. Основы изобретательской деятельности.

Знакомство с основами технического и научного творчества и инженерной деятельности

Блок 3. Основы подготовки презентаций.

Презентация, какие бывают презентации, примерный порядок слайдов, правила шрифтового оформления, правила выбора цветовой гаммы, графическая информация, анимация, типичные недочеты и ошибки при создании презентаций.

Практическая часть

Практическое занятие № 1. Начало работы над собственным проектом: идея, замысел, развитие творческой задачи. Составление доклада.

Практическое занятие № 2. Составление презентации.

Контрольная работа по теме 1.

ТЕМА 2. АЛГОРИТМ. ПРОГРАММА

Блок 1. Микроконтроллеры. Основные понятия.

Понятие микроконтроллера. Типы микроконтроллеров. Языки программирования образовательных микроконтроллеров. Учебные микроконтроллерные системы, знакомство с базовыми наборами, применение учебных микроконтроллеров и типовые проекты.

Блок 2. Алгоритм. Программа.

Понятия программы и алгоритма. Условия, циклы, функции. Разработка алгоритма функционирования светофора на разноцветных светодиодах.

Блок 3. Аналоговые и цифровые сигналы.

Что такое сигналы. Какие виды сигналов существуют. Устройство аппаратной платформы Arduino: UNO, Atmega 328 и FT232. Работа с цифровыми и аналоговыми сигналами на примере датчиков освещенности и расстояния. Подключение сервомотора. Управление углом поворота сервомотора в зависимости от значения, полученного с датчика расстояния.

Блок 4. Транзисторный ключ.

Общие представления о биполярном и полевом транзисторах. Транзистор в режиме ключа. Управление двигателем с помощью транзистора, а также с помощью реле.

Практическая часть

Практическое занятие № 1. Работа с цифровыми и аналоговыми сигналами на примере датчиков освещенности и расстояния.

Практическое занятие № 2. Управление двигателем с помощью транзистора, а также с помощью реле.

Контрольная работа по теме 2.

ТЕМА 3. ПРИМЕНЕНИЕ МИКРОКОНТРОЛЛЕРОВ В РОБОТОТЕХНИКЕ

Блок 1. Схемы электрического питания.

Почему важно использовать не только элементы питания, но и дополнительные схемы к ним. Закон Ома. Схемы питания. Сложение напряжений и увеличение тока. Понижающие и повышающие преобразователи напряжения.

Блок 2. Управление внешними устройствами.

Архитектура и интерфейс контроллера (экран, кнопки управления модулем, индикатор состояния, порты, элементы питания), интерфейс программного обеспечения для ПК. Типы моторов и управление ими, операторы действия, управление операторами, циклы, управление колесной тележкой, многозадачность, длинна окружности, связь пройденного пути с оборотами двигателя, операторы действия (переключатель), база данных на основе оператора действия «переключатель».

Блок 3. Обработка сигналов датчиков.

Ультразвуковой датчик расстояния, датчик цвета, датчик касания, распознавание цвета.

Блок 4. Алгоритмы движения роботов.

Движение по линии, движение вдоль стены.

Практическая часть

Практическое занятие № 1. Программирование движения по математической модели траектории, связь количества оборотов и пройденного пути (длинна окружности), создание циклов движения.

Практическое занятие № 2. Сборка и программирование движения базового робота.

Практическое занятие № 3. Программирование базового робота на движение до препятствия, измерение расстояния до препятствия.

Практическое занятие № 4. Программирование движения базового робота по линии.

Контрольная работа по теме 3.

ТЕМА 4. МЕХАНИКА И ДИНАМИКА РОБОТОВ

Блок 1. Основные понятия кинематики.

Механика, понятие механизма, определение кинематики, кинематические пары, кинематические схемы, понятие движения, виды движения, траектория движения, путь, перемещение, понятие скорости, понятие ускорения.

Блок 2. Простые механические системы.

Зубчатые передачи. Передаточное отношение и передаточное число. Изучение влияния геометрических параметров элементов простых механизмов на их

силовые и кинематические характеристики. Подготовка к выполнению творческого задания.

Практическая часть

Практическое занятие № 1. Сборка рычажного механизма. Исследование типов движения элементов рычажного механизма.

Практическое занятие № 2. Сборка модели колесной тележки с бортовым типом поворота и бортовым редуктором, испытания скорости движения, исследование траектории движения.

Практическое занятие № 3. Сборка модели ручной или автоматизированной лебедки, расчет максимальной грузоподъемности лебёдки.

Контрольная работа по теме 4.

ТЕМА 5. ОСНОВЫ НАЧЕРТАТЕЛЬНОЙ ГЕОМЕТРИИ, ИНЖЕНЕРНОЙ ГРАФИКИ И САПР

Блок 1. Эскизы и чертежи.

Понятие эскиза, типы линий, построение перпендикуляров, построение касательных линий к окружности, способы деления угла на части, построение сопряжений двух прямых окружностью, образование проекций, типы проекций, проецирование тел на три плоскости.

Блок 2. Основы работы в графических редакторах.

Понятие векторной и растровой графики, знакомство с интерфейсом программы Компас3D, типы линий, операции, трассировка изображений, форматы для экспорта на лазерный станок.

Блок 3. Кинематические схемы.

Назначение кинематических схем, условные обозначения кинематических схем, простые кинематические схемы, графический метод анализа движения (вращение рычага, направление вращения зубчатых передач и т.д.).

Блок 4. Геометрические способы передачи информации.

Система стандартов (общие сведения), понятие масштаба, виды, разрезы, сечения, нанесение размеров на чертеже, оформление надписей на чертеже.

Практическая часть

Практическое занятие № 1.

Задание прямой линии на чертеже, ортогональное проецирование прямой и точки на плоскость, построение геометрических фигур по заданным значениям углов и длин.

Практическое занятие № 2.

Определение длины отрезка прямой и углов наклона его к плоскостям проекций.

Практическое занятие № 3.

Задание плоскости на чертеже. Нанесение размеров, построение выносных линий, построение угловых размеров.

Практическое занятие № 4.

Построение разрезов и сечений в проекционной связи. Построение развертки коробки (корпуса).

Контрольная работа по теме 5.

Итоговая контрольная работа

Учебно-тематический план 6 класса

[6 класс, 64 часов, 2 часа в неделю]

No	Наименование тем и блоков	Общее количество учебных часов	Теория	Практика
	Тема 1 Введение в робототехнику	10	5	3
Блок 1	Техника безопасности	2	2	0
Блок 2	Основы изобретательской деятельности	2	2	0
Блок 3	Основы подготовки презентаций	4	1	3
	Контрольная работа по теме 1	2		
	Тема 2 Основы аналоговой электроники	12	4	6
Блок 1	Транзисторы. Операционные усилители	4	2	2
Блок 2	Готовые аналоговые схемы и модули	4	2	2
Блок 3	Проектирование и изготовление печатных плат	2	0	2
	Контрольная работа по теме 2	2		
	Тема 3 Робототехника на базе Arduino	14	4	8
Блок 1	Обзор контроллеров семейства Arduino	2	2	0
Блок 2	Подключение внешних устройств к Arduino	10	2	8
	Контрольная работа по теме 3	2		

No	Наименование тем и блоков	Общее количество учебных часов	Теория	Практика
	Тема 4 Структура и кинематика механических систем	12	4	6
Блок 1	Степени свободы. Структурные схемы	4	2	2
Блок 2	Типы и классификация механических передач	6	2	4
	Контрольная работа по теме 4	2		
	Тема 5 Основы трехмерного моделирования, моделирование деталей машин и простых механизмов	14	6	6
Блок 1	Знакомство с САПР трехмерного моделирования	4	2	2
Блок 2	Основы твердотельного моделирования	4	2	2
Блок 3	Основы проектирования сборок	4	2	2
	Контрольная работа по теме 5	2		
	Итоговая контрольная работа	2		
8	Всего	64		

Содержание программы 6 класс ТЕМА 1. ВВЕДЕНИЕ В ИНЖЕНЕРНОЕ ДЕЛО

Блок 1. Техника безопасности

Оборудование учебного кабинета. Техника безопасности. Средства индивидуальной защиты. Инструменты. Станки. Правила поведения на занятиях.

Блок 2. Основы инженерного дела

Знакомство с основами технического и научного творчества и инженерной деятельности

Блок 3. Основы изобретательской деятельности

Знакомство с основами изобретательской деятельности. Методы генерации идеи. Поиск перспективных направлений. Знакомство с методами сравнительного анализа.

Практическая часть

Практическое занятие №1. Начало работы над собственным проектом: идея, замысел, развитие творческой задачи.

Практическое занятие №2. Составление доклада об инженерном направлении.

Практическое занятие №3. Составление презентации проекта.

Контрольная работа по теме 1.

ТЕМА 2. ОСНОВЫ АНАЛОГОВОЙ ЭЛЕКТРОНИКИ

Блок 1. Транзисторы. Операционные усилители.

Конструкция и принцип работы биполярного транзистора. УГО. Основные параметры. Изучение внешнего вида транзисторов. Испытания транзистора. Составление и анализ графиков. Сборка датчика воды и датчика касания на макетной плате. Сборка усилителя звука. Сборка телефонного аппарата. Знакомство с фототранзистором. Знакомство с оптическими парами. Сборка охранённой системы с задержкой времени срабатывания. Генераторы на транзисторах. Одно- и мультивибраторы. Сборка схемы индикатора уровня жидкости и бим-робота. Знакомством с типами и внешним видом полевых транзисторов и правил работы с ними. Сборка простейших схем для демонстрации особенностей полевых транзисторов.

Блок 2. Готовые аналоговые схемы и модули.

Принцип работы операционного усилителя (ОУ). Основные параметры ОУ. УГО. Типовые схемы на ОУ. Дифференциальный усилитель. Сумматор, цепь вычитания, цепь смещения нуля. Компаратор. Триггер Шмидта. Знакомство с операционными усилителями. Знакомство с трансформаторами тока. Сборка схемы для усиления слабых сигналов от трансформаторов тока и напряжения. Знакомство с конструкцией и принципом действия измерительного моста на резисторах. Дифференциальный усилитель. Схема замещения. Сумматор и вычитатель

напряжения. Схема смещения нуля. Знакомство с компараторами. Проверка работы операционного усилителя в режиме компаратора. Выявление проблемы компаратора. Применение триггера Шмидта. Гистерезис.

Блок 3. Проектирование и изготовление печатных плат.

Изучение схем включения и особенностей применения драйверов симисторов и драйверы двигателей. Изучение схем включения и особенностей применения линейных стабилизаторов и регуляторы напряжения. Изготовление платы для годового учебного проекта.

Практическая часть

Практическое занятие №1. Сборка датчика воды и датчика касания на макетной плате.

Практическое занятие №2. Сборка усилителя звука.

Практическое занятие №3. Сборка простого телефонного аппарата.

Практическое занятие №4. Сборка схемы индикатора уровня жидкости.

Практическое занятие №5. Сборка бим-робота.

Контрольная работа по теме 2.

TEMA 3. POБОТОТЕХНИКА НА БАЗЕ ARDUINO

Блок 1. Обзор контроллеров семейства Arduino.

Особенности платформы Arduino. История создания Arduino. Платы расширения. Arduino Pro Mini. Arduino Uno. Arduino Nano. Arduino Mega. Установка, настройка, обзор интерфейса Arduino IDE. Цифровые и аналоговые выводы. Структуры программы. Синтаксис и операторы. Управляющие операторы. Арифметические операторы. Операторы сравнения. Логические операторы. Унарные операторы. Типы данных. Переменные. Константы. Функции. Библиотеки.

Блок 2. Подключение внешних устройств к Arduino.

Подключение к ПК. Правила подключения внешних устройств и плат расширения. Светодиод. ШИМ. Работа с монитором порта. Датчик нажатия. Пьезоэффект и звук. Матричная клавиатура. Потенциометр и АЦП. Фоторезистор. Макет автоматического светильника. Бесконтактная линейка на базе инфракрасного дальномера. Интерфейсы UART, SPI, I2C. Семи сегментный индикатор. Светодиодная матрица. ЖК-индикатор. Датчик измерения температуры и влажности. Реле. Сервоприводы. Шаговый двигатель.

Блок 3. Робототехническое устройство на базе Arduino.

Подключение электронных компонентов колесной платформы. Управление двигателем. Реализация алгоритмов передвижения. Движение с использованием информации от датчиков. Ультразвуковой дальномер. Датчики освещенности. ИК управление роботом. Радар. Объезд препятствия. Защита от падения со стола.

Практическая часть

Практическое занятие №1. Программы управления светодиодом.

Практическое занятие №2. Программы, реализующие ввод и обработку цифровых и аналоговых сигналов.

Практическое занятие №3. Программа управления светодиодом в режиме ШИМ.

Практическое занятие №4. Программа управления пьезодинамиком.

Практическое занятие №5. Программа управления потенциометром.

Практическое занятие №6. Программа для автоматического светильника на базе фоторезистора.

Практическое занятие №7. Программа управления семисегментным индикатором.

Контрольная работа по теме 3.

ТЕМА 4. СТРУКТУРА И КИНЕМАТИКА МЕХАНИЧЕСКИХ СИСТЕМ

Блок 1. Степени свободы. Структурные схемы.

Понятие кинематики. Понятие механизма. Подвижность механизма. Кинематические пары. Понятие степени свободы, число степеней свободы тела на плоскости. Рука человека и манипулятор робота. Структурные схемы различных механизмов (Рычажные механизмы. Зубчатые механизмы. Механизмы с гибкими связями.) и их степени свободы.

Блок 2. Типы и классификация механических передач

Передачи зацеплением, передачи трением, передачи непосредственного контакта, передачи гибкими связями. Передаточное отношение. Передаточное число. Рядовые и ступенчатые зубчатые передачи. Планетарные зубчатые передачи. Конические и червячные зубчатые передачи. Кинематический анализ механических передач и рычажных механизмов, входящих в состав привода мобильного робота.

Практическая часть

Практическое занятие №1. Определение числа степеней свободы рычажных механизмов, построение кинематических схем.

Практическое занятие №2. Вычисление числа степеней свободы манипулятора по структурной формуле.

Практическое занятие №3. Расчет степеней свободы механизмов преобразования механического движения, анализ кинематических и структурных схем.

Практическое занятие №4. Определение передаточного отношения рядовой и ступенчатой зубчатой передачи по заданным числам зубьев зубчатых колёс, кинематический анализ механических передач.

Практическое занятие №5. Определение передаточного отношения планетарной зубчатой передачи аналитическим методом.

Практическое занятие №6. Компоновка электромеханического привода с пространственными механическими передачами.

Контрольная работа по теме 4.

ТЕМА 5. ОСНОВЫ ТРЕХМЕРНОГО МОДЕЛИРОВАНИЯ, МОДЕЛИРОВАНИЕ ДЕТАЛЕЙ МАШИН И ПРОСТЫХ МЕХАНИЗМОВ

Блок 1. Знакомство с САПР трехмерного моделирования.

Краткая история развития трехмерных технологий, понятие трехмерного пространства. Скульптура, архитектура, компьютерные игры, машиностроение. Примеры применения САПР, назначение отдельных САПР, знакомство с интерфейсом Компас 3D, наборы инструментов, графическое поле, ориентация видов, отображение моделей, эскиз (sketch), требования к эскизу, размеры (sketch dimension) и ограничения (constraints).

Блок 2. Основы твердотельного моделирования.

Применение формообразующих операций: выдавливание(extrude), вращение(revolve), по сечениям(loft), по траектории (sweep); Листовой металл (Sheet meal) сгибы (flange), развертки; Конфигурация операций: новое тело (new body), объединение(join), вырезать(cut), пересечь(intersect). Фаска, скругление, ребро жесткости, резьба, уклон(конус), проточка, шлиц, лыска. Шлицевое соединение, лыски, муфты, болтовые соединения, использование библиотеки конструкционных элементов, прямой привод колесной тележки.

Блок 3. Основы проектирования сборок

Особенности применения материалов, листовые материалы, детали, особенности моделирования для трехмерной печати, герметичность корпусов. Понятие сборки, сопряжения деталей, ограничения, подвижные соединения, зазоры и посадки.

Практическая часть

Практическое занятие №1. Регистрация аккаунта Компас 3D. Основные функции Компас 3D, ориентация видов, импорт деталей, вставка подложки(canvas). Создание эскиза (Sketch), операция выдавливания(extrude) и ее вариации (joint, cut, new body), построение простых фигур.

Практическое занятие №2. Операция вращения (revolute), построение модели тора(обруч), цилиндра, сферы. Использование многоконтурного эскиза для группы операций (выдавить затем вырезать).

Практическое занятие №3. Операция размножить по шаблону (rectangular pattern), модификация операций (Press pull).

Практическое занятие №4. Построение трехмерной модели детали по чертежу.

Практическое занятие №5. Оптимизация формы детали, создание фасок (chamfer), скруглений (fillet).

Практическое занятие №6. Ребро жесткости. Оболочка (shell). Пазы и отверстия.

Практическое занятие №7. Создание разъемного корпуса для электроприбора.

Практическое занятие №8. Проектирование деталей в сборке. Создание сопрягаемых отверстий. Создание сборки из двух и более элементов, создание сопряжений (joint) между компонентами.

Практическое занятие №9. Библиотека стандартных изделий. Вставка болтовоан (винтов, гаек), моделирование винтового соединения.

Практическое занятие №10. Создание сборки трехмерной модели электронного или электромеханического устройства.

Контрольная работа по теме 5.

Итоговая контрольная работа.

3 ОРГАНИЗАЦИОННО-ПЕДАГОГИЧЕСКИЕ УСЛОВИЯ РЕАЛИЗАЦИИ ПРОГРАММЫ

Занятия проводятся по 2 часа в неделю в постоянных группах учащихся 5-6 классов, сформированных по возрастному признаку из учащихся, прошедших конкурсный отбор (оптимальное количество участников в группе: 10–15 человек), в форме теоретических, практических и индивидуальных занятий, а также консультаций (проектная деятельность, подготовка к олимпиадам, конференциям).

Основные формы работы –решение практических задач, индивидуальное проектированиения.

Практико-ориентированная часть программы реализуется за счет проведения практических работ. Учитель самостоятельно распределяет часы на практические работы в зависимости от особенностей класса.

Ожидаемые результаты программы определяются с использованием пятибалльной системы оценивания (баллы от 1 до 5).

4 СПИСОК ЛИТЕРАТУРЫ

- 1. Arduino. Информационно-справочный портал [Электронный ресурс] URL: https://www.arduino.cc/
- 2. Raspberry pi. Информационно-справочный портал [Электронный ресурс] Режим доступа: URL:https://www.raspberrypi.org/
- 3. Анурьев, В.И. Справочник конструктора-машиностроителя: в 3 т. / В.И. Анурьев. Под ред. И. Н. Жестковой. 8-е изд., перераб. и доп. М.: Машиностроение, 2001.
- 4. Ардуино на русском. Информационно-справочный портал [Электронный ресурс] Режим доступа: URL: https://www.arduino.ru/
- 5. Бейктал Джон [Beyctal John] Конструируем роботов на Arduino. Первые шаги / Джон Джон [John Beyctal]; пер. с англ. О. А. Трефиловой. М.: Лаборатория знаний, 2016. 320 с.
- 6. Бейктал Джон [Beyctal John] Конструируем роботов от А до Я. Полное руководство для начинающих / Джон Джон [John Beyctal]; пер. с англ. О. А. Трефиловой. М.: Лаборатория знаний, 2018. 394 с.
- 7. Блум Джереми [Blum Jeremy] Изучаем Arduino: инструменты и методы технического волшебства / Джереми Блум [Jeremy Blum]; пер. с англ. СПб.: БХВ-Петербург, 2017. 336 с.
- 8. Владимир, В.М. Электрический привод / В.М. Владимир М.: ИНФРА-М, 2019.-364 с.
- 9. Дмитрова М.И. 33 схемы с логическими элементами И-НЕ / М.И. Дмитрова. Ленинград: Энергоатомиздат, 1988. 112 с.
- 10. Жмудь, В.А. Моделирование и численная оптимизация замкнутых систем автоматического управления в программе VisSim: учебное пособие / В.А. Жмудь. Новосибирск: НГТУ. 2012. 124 с.
- 11. Злотин, Б.Л., Зусман, А.В. Месяц под звездами фантазии / Б.Л. Злотин, А.В. Зусман— Кишенев: Лумина, 1988. 276 с.
- 12. Кириченко, П.Г. Электроника. Цифровая электроника для начинающих / П.Г. Кириченко. СПб.: БХВ-Петербург, 2019. 176 с.
- 13. Ковалев, И.М. Кинематический расчет электромеханического привода. Методические указания по выполнению расчетных заданий и курсовых проектов по деталям машин и механике. / И.М. Ковалев Барнаул: Изд-во АлтГТУ, 2005. 26 с.
- 14. Ковалев, И.М. Расчет и проектирование ременных передач. Методические указания к курсовому проектированию по деталям машин и основам конструирования. / И.М. Ковалев, С.Г. Цыбочкин Барнаул: Издво АлтГТУ, 2008.-35~c.
- 15. Коршунов, Н.М. Право интеллектуальной собственности / Н.М. Коршунов, Н.Д. Эриашвили, В.И. Липунов и др.; ред. Н.Д. Эриашвили; под ред. Н.М. Коршунова. М. Юнити-Дана, 2015. 327 с.

- 16. Кузнецов, И.Н. Основы научных исследований / И.Н. Кузнецов М.: Издательско-торговая корпорация «Дашков и К°», 2017. 283 с.
- 17. Ларионов, И.К. Защита интеллектуальной собственности / И.К. Ларионов, М.А. Гуреева, В.В. Овчинников и др.; под ред. И.К. Ларионова, М.А. Гуреевой, В.В. Овчинникова. М.: Издательско-торговая корпорация «Дашков и К°», 2018. 256 с.
- 18. Матронина, Л.Ф. Философия техники / Л.Ф. Матронина, Г.Ф. Ручкина, О.Б. Скородумова. М.: МИРЭА, 2015. 156 с.
- 19. Механика в робототехнике. Информационно-справочный портал [Электронный ресурс] Режим доступа: URL: http://insiderobot.blogspot.com
- 20. Момот, М.В. Мобильные роботы на базе Arduino / М.В. Момот. СПб.: БХВ-Петербург, 2017. 336 с.
- 21. Монк Саймон [Monk Simon] Мейкерство. Arduino и Raspberry Pi. Управление движением, светом и звуком / Саймон Монк [Simon Monk]; пер. с англ. СПб.: БХВ-Петербург, 2017. 336 с.
- 22. Нестеренко, А.А. Мастерская знаний. Учебно-методическое пособие для педагогов / А.А. Нестеренко. М.: Book-in-file, 2013. 603 с.
- 23. Нестеренко, А.А. Страна загадок. Книга о развитии творческого мышления у детей / А.А. Нестеренко. М.: ИГ «Весь», 2017. 192 с.
- 24. Нестеренко, А.А. Ура! У нас проблемы! / А.А. Нестеренко. М.: Book-in-file, 2013.-34 с.
- 25. Овсяницкая, Л.Ю., Курс программирования робота EV3 в среде Lego Mindstorms EV3. 2-е изд., перераб. и доп / Л.Ю. Овсяницкая, Д.Н. Овсяницкий, А.Д. Овсяницкий. М.: Издательство «Перо», 2016. 300 с.
- 26. Овсяницкая, Л.Ю., Овсяницкий Д.Н., Овсяницкий А.Д., Алгоритмы и программы движения робота Lego Mindstorms EV3 по линии. / Л.Ю. Овсяницкая, Д.Н. Овсяницкий, А.Д. Овсяницкий. М.: Издательство «Перо», 2015.-168 с.
- 27. Овсяницкая, Л.Ю., Овсяницкий Д.Н., Овсяницкий А.Д., Машинное зрение в среде Lego Mindstorms EV3 с использованием камеры Pixy (CMUcam5) / Л.Ю. Овсяницкая, Д.Н. Овсяницкий, А.Д. Овсяницкий. Электронная книга, 2016. 168 с.
- 28. Овсяницкая, Л.Ю., Овсяницкий Д.Н., Овсяницкий А.Д., Пропорциональное управление роботом Lego Mindstorms EV3 / Л.Ю. Овсяницкая, Д.Н. Овсяницкий, А.Д. Овсяницкий. М.: Издательство «Перо», 2015.-188 с.
- 29. Панкратов, В.В. Автоматическое управление электроприводами: учебное пособие, ч. 1. Регулирование координат электроприводов постоянного тока / В.В. Панкратов. Новосибирск: НГУ, 2013. 200 стр.

- 30. Перельман, Я.И. Занимательная механика / Я.И. Перельман, под ред. И.Я. Штаермана. М.: Физматгиз, 1959. 184 с.
- 31. Перельман, Я.И. Занимательная физика. в 2 т. / Я.И. Перельман. М.: Юрайт, 2018. 192 с.
- 32. Петин, В.А. Проекты с использованием контроллера Arduino. 2-е изд., перераб. и доп. / В.А Петин. СПб.: БХВ-Петербург, 2015. 457 с.
- 33. Платт Чарльз [Platt Charles] Электроника для начинающих. 2-е изд., перераб. и доп. / Чарльз Платт [Charles Platt]; пер. с англ. Санкт-Петербург: БХВ-Петербург, 2017 416 с.
- 34. Ричардсон Мэтт [Richardson Matt], Шон Уоллес Шон [Shawn Wallace]. Заводим Raspberry Pi / Мэтт Ричардсон [Matt Richardson], Уоллес Шон [Wallace Shawn]. пер. с англ. М.: Амперка, 2013. 230 с.
- 35. Роботы, робототехника и микроконтроллеры. Информационносправочный портал [Электронный ресурс] — Режим доступа: URL: https://myrobot.ru
- 36. Сворень, Р.А. Шаг за шагом. Транзисторы / Р.А. Сворень. М.: Детская литература, 1971-342 с.
- 37. Сворень, Р.А. Электричество шаг за шагом / Р.А. Сворень. М.: фонд «Наука и жизнь», 2012-460 с.
- 38. Сворень, Р.А. Электроника шаг за шагом: практическая энциклопедия юного радиолюбителя / Р.А. Сворень. М.: Детская литература, 1991. 446 с.
- 39. Тарасов, Л.В. Механика. Продвинутый курс: Для старшеклассников и студентов / Л.В Тарасов. М.: Ленанд, 2017. 712 с.
- 40. Физическая смекалка: Занимательные задачи и опыты по физике для детей / Я.И. Перельман и др. М.: Омега, 1994. 256 с.
- 41. Хилькевич, С.С. Физика вокруг нас / С.С. Хилькевич. М.: Наука, $1985.-160~\mathrm{c}.$
- 42. Черниченко, Г.Т. Простая автоматика: рассказы об автоматики и автоматах-самоделках / Г.Т. Черниченко. Ленинград: Детская литература, 1989.-127 с.
- 43. Шейнблит, А.Е. Курсовое проектирование деталей машин: Учеб. пособие. Изд-е 2-е, перераб. и дополн. / А.Е. Шейнблит. Калининград: Янтар. Сказ, 2002. 454 с.
- 44. Шелякин, В.П. Электрический привод: краткий курс 2-е изд., испр. и доп. / В.П., Шелякин, Ю. М. Фролов. М.: Юрайт, 2018. 273 с.
- 45. Шичков, Л.П. Электрический привод. Учебник и практикум. 2 издание. / Л.П Шичков. М.: Юрайт, 2017 330 с.
- 46. Шойко, В.П. Автоматическое регулирование в электрических системах: учебное пособие / В.П. Шойко. Новосибирск: НГТУ, 2012. 195 с.

5 ФОРМЫ КОНТРОЛЯ ОЦЕНОЧНЫЕ МАТЕРИАЛЫ Примеры заданий экзамена (теория)

5 КЛАСС

- Вопрос 1. Закон Ома.
- Вопрос 2. Расчет параллельного и последовательного соединения резисторов.
- Вопрос 3. Единицы измерения базовых электрических величин.
- Вопрос 4. Характеристика поступательного и вращательного движения.
- Вопрос 5. Золотое правило механики.
- Вопрос 6. Первый закон Ньютона.
- Вопрос 7. Второй закон Ньютона.
- Вопрос 8. Третий закон Ньютона.
- Вопрос 9. Изобразите проекцию сферы на плоскость.

6 КЛАСС

- Вопрос 1. Определить число степеней свободы предложенного преподавателем манипулятора.
- Вопрос 2. Что показывает знак передаточного отношения.
- Вопрос 3. Определить передаточное отношение ступенчатых передач, предложенных преподавателем.
- Вопрос 4. Основные свойства полупроводникового диода.
- Вопрос 5. Критерии выбора биполярного транзистора.
- Вопрос 6. Что такое алгоритм. Правила построения алгоритма.
- Вопрос 7. Назовите основные отличия микроконтроллера от микропроцессора.
- Вопрос 8. Назовите отличия каркасного 3D-моделирования от твердотельного.
- Вопрос 9. Назовите требования, предъявляемые к эскизу, для операции выдавливания.

ПОЯСНЕНИЕ ФОРМ КОНТРОЛЯ ОСВОЕНИЯ ПРОГРАММЫ

Итоговый контроль

Экзамен принимает преподаватель или коллектив преподавателей, ведущих предмет. Аттестация проводится в устной или письменной форме по билетам. Преподавателю предоставляется право задавать дополнительные вопросы сверх содержимого билета, а также, помимо теоретических вопросов, давать задачи и примеры, связанные с курсом. Время подготовки обучающегося для последующего ответа не более одного академического часа.

Защита учебного творческого проекта

По окончании курса проходит защита учебного творческого проекта в виде презентации результатов. Проект должен быть направлен на решение актуальных задач в области науки или техники. Во время выполнения проекта учащиеся должны продемонстрировать полученные знания за предыдущие годы обучения в виде комплексного решения. На защите проекта обучающийся представляет свой реализованный проект перед группой и преподавателем по следующему (примерному) плану:

- 1. Тема и краткое описание сути проекта.
- 2. Актуальность проекта.
- 3. Положительные эффекты от реализации проекта, которые получат как сам автор, так и другие люди.
- 4. Ресурсы (материальные и нематериальные), которые были привлечены для реализации проекта, а также источники этих ресурсов.
- 5. Ход реализации проекта.
- 6. Риски реализации проекта и сложности, которые обучающемуся удалось преодолеть в ходе его реализации.

Промежуточный контроль

Контрольная работа может проводиться в письменной форме по билетам, содержащим тестовые и практические задания, или в форме учебного творческого проекта.

Текущий контроль

В результате выполнения самостоятельной работы обучающимся формируется набор отчетов, в которых приводится результат выполнения домашних заданий, выполненных в свободной форме.