Министерство науки и высшего образования Российской Федерации

Муниципальное бюджетное учреждение дополнительного образования «Центр детского научного и инженерно-технического творчества» города Невинномысска

СОГЛАСОВАНО	УТВЕРЖДАЮ
Педагогическим советом	Директор
Протокол №	Т.В. Чилхачоян
от « » 2025 г.	« » 2025 г

ДОПОЛНИТЕЛЬНАЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ПРОГРАММА ТЕХНИЧЕСКОЙ НАПРАВЛЕННОСТИ

Робототехника

7-8 класс Срок реализации программы - 2 года

Авторы-составители: Шенцов И.В., педагог

СОДЕРЖАНИЕ

- 1. Пояснительная записка
- 2. Учебно-тематический план и содержание
- Оценочные материалы
 Список литературы
 Приложение

1. ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Дополнительная общеобразовательная программа технической направленности «Робототехника» (далее – программа) имеет базовый уровень и предназначается для обучающихся/воспитанников 7–8 классов образовательных центров Фонда Андрея Мельниченко (далее – ОЦФ).

Актуальность программы обусловлена требованиями современного общества к формированию системы работы с одаренными детьми в условиях дополнительного образования.

Программа разработана на основе следующих документов:

- закон Российской Федерации «Об образовании» (Федеральный закон от 29 декабря 2012 г. № 273-ФЗ);
- приказ Министерства просвещения РФ от 9 ноября 2018 г. № 196 «Об утверждении порядка организации и осуществления образовательной деятельности по дополнительным общеобразовательным программам»;
- концепция развития дополнительного образования детей (Распоряжение Правительства РФ от 4 сентября 2014 г. №1726-р);
- постановление Главного государственного санитарного врача от 28.09.2020 г. № 28 «Об утверждении санитарных правил СП 2.4.3648-20 «Санитарно-эпидемиологические требования к организациям воспитания и обучения, отдыха и оздоровления детей и молодёжи»;
- постановление Главного государственного санитарного врача от 28.01.2021 г. № 2 «Об утверждении санитарных правил СанПиН 1.2.3685-21 «Гигиенические нормативы и требования к обеспечению безопасности и (или) безвредности для человека факторов среды обитания».

Актуальность программы обуславливается стимулированием интересов учащихся к дисциплинам технического направления, экспериментальным исследованиям, проектной деятельности и состоит в обеспечении адаптации школьников к жизни в обществе, профессиональной ориентации, а также в выявлении и поддержке учащихся, проявивших выдающиеся способности.

Программа может быть реализована с помощью дистанционных технологий, технологий смешанного и модульного обучения.

Цель программы – практическое ознакомление с основами мехатронных и робототехнических систем, их изучение и овладение методами и средствами их проектирования, моделирования, экспериментального исследования, отладкой и эксплуатацией.

Задачи программы:

- обеспечить усвоение базовых инженерных знаний;
- сформировать и развить творческое техническое мышление и навыки самостоятельного конструирования мехатронных и робототехнических систем, разработку новых устройств и программных средств;

- сформировать навыки использования математического аппарата и основных естественнонаучных законов для решения практических и экспериментальных задач в робототехнике;
- развить одарённость и творческий потенциал учащихся, способных к научному поиску.

Объем, содержание и планируемые результаты освоения программы определены исходя из особенностей одарённых учащихся в области технических наук. Вместе с тем при определении объёма и содержания программы учитывались сложность конкретной темы по отношению к другим темам раздела, возможность приобретения учащимися практического опыта и осуществления межпредметных связей.

Порядок тем и блоков, представленный в учебно-тематическом плане, допускается корректировать в пределах программы класса. По усмотрению педагога возможна параллельная подача тем и блоков в рамках учебной недели.

К отличительным особенностям программы относится уникальный набор направлений и дисциплин, позволяющий учащимся получить комплексную инженерную, общетехническую и междисциплинарную подготовку. Элементы кибернетики, механики, деталей машин, 3D графики, электротехники, программирования и теории автоматического управления адаптированы для уровня восприятия учащихся, что позволяет начать подготовку инженерных кадров с 7 класса.

Срок реализации программы – 2 года.

Продолжительность учебного года – 64 недели.

Общий объём – 128 часов.

Формы и режим занятий

Занятия проводятся в постоянных группах учащихся, сформированных по возрастному принципу (оптимальное количество участников в группе — 12–15 человек), в форме теоретических, практических и индивидуальных занятий, а также консультаций (проектная деятельность, подготовка к олимпиадам, конференциям): для 7-8 классов — 2 часа в неделю;

Ожидаемые результаты программы:

- 1. Самостоятельное проектирование и конструирование роботов и робототехнических систем промышленного и непромышленного назначения.
- 2. Самостоятельная разработка программно-алгоритмического обеспечения для управления робототехническими системами.
- 3. Способность понимать используемые современные методы, алгоритмы, модели и технические решения в мехатронике, робототехнике и знать области их применения, в том числе в автоматизированных производствах.

Контроль освоения программы – текущий, промежуточный и итоговый.

Текущий контроль осуществляется на занятиях (ответы у доски, письменные работы, практические работы и устные ответы, домашние задания); защита практической работы или письменный и/или устный опрос после изучения блока или набора взаимосвязанных блоков, выделенных педагогом.

Промежуточный контроль проводится в соответствии с учебнотематическим планом после освоения темы или набора взаимосвязанных тем в форме контрольной работы, содержащей устную и практическую часть, или защиты практической работы.

Итоговый контроль проводится в форме экзамена после каждого года обучения, включающего в себя теоретическую и практическую части или защиту учебного творческого проекта (см. Приложение A).

Программой предусмотрено использование тестов для итогового контроля либо защита индивидуального творческого проекта.

2 УЧЕБНО-ТЕМАТИЧЕСКИЙ ПЛАН И СОДЕРЖАНИЕ

Учебно-тематический план 7 класса

7 класс [64 часов, 2 часа в неделю]

Nº	Наименование тем и блоков	Общее количество учебных часов	Teop.	Практ.
	Тема 1 Введение в робототехнику	10	5	3
Блок 1	Техника безопасности	2	2	0
Блок 2	Основы изобретательской деятельности	2	2	0
Блок 3	Основы подготовки презентаций	4	1	3
	Контрольная работа по теме 1	2		
	Тема 2 Основы аналоговой электроники	12	4	6
Блок 1	Резисторы. Конденсаторы. Индуктивность	4	2	2
Блок 2	Готовые аналоговые схемы и модули	6	2	4
	Контрольная работа по теме 2	2		
	Тема 3 Робототехника на базе Arduino	14	4	8
Блок 1	Подключение внешних устройств к Arduino	2	2	0
Блок 2	Обработка сигналов датчиков. Робототехническое устройство на базе Arduino	6	2	4
Блок 3	Робототехническое устройство на базе Arduino	4	2	2
	Контрольная работа по теме 3	2		
	Тема 4 Знакомство с алгоритмами для робота	12	4	6

N₂	Наименование тем и блоков	Общее количество учебных часов	Teop.	Практ.
Блок 1	Основные понятия кинематики	4	2	2
Блок 2	Простые механические системы	6	2	4
	Контрольная работа по теме 4	2		
	Тема 5 Основы трехмерного моделирования, моделирование деталей машин и простых механизмов	14	6	6
Блок 1	Эскизы и чертежи. Основы работы в графических редакторах.	4	2	2
Блок 2	Основы проектирования сборок	4	2	2
Блок 3	Моделирование элементов подвижных устройств	4	2	2
	Контрольная работа по теме 5	2		
	Итоговая контрольная работа	2		
	Всего	64		

СОДЕРЖАНИЕ ПРОГРАММЫ 7 КЛАСС

ТЕМА 1. ВВЕДЕНИЕ В ИНЖЕНЕРНОЕ ДЕЛО

Блок 1. Техника безопасности

Оборудование учебного кабинета. Техника безопасности. Средства индивидуальной защиты. Инструменты. Станки. Правила поведения на занятиях.

Блок 2. Основы инженерного дела

Знакомство с основами технического и научного творчества и инженерной деятельности

Блок 3. Основы изобретательской деятельности

Знакомство с основами изобретательской деятельности. Методы генерации идеи. Поиск перспективных направлений. Знакомство с методами сравнительного анализа.

Практическая часть

Практическое занятие №1. Начало работы над собственным проектом: идея, замысел, развитие творческой задачи.

Практическое занятие №2. Составление доклада об инженерном направлении.

Практическое занятие №3. Составление презентации проекта. **Контрольная работа по теме 1.**

ТЕМА 2. ОСНОВЫ АНАЛОГОВОЙ ЭЛЕКТРОНИКИ

Блок 1. Резисторы. Конденсаторы. Индуктивность.

Его параметры, конструкция Резистор. И условное графическое Последовательно и параллельное включение резисторов. Буквенно-цифроные и цветовые обозначения величины сопротивления на корпусе резистора. Переменные и подстроенный резисторы. Их конструкция, применение, в том числе как датчики, и УГО. Термо-, фото- и тензорезисторы. Разбор и изучение конструкции переменного резистора. Испытания термо-, фото- и тензорезисторов. Сборка регулятора яркость для лампы с переменным резистором. Знакомство с разъемными соединениями. Изучение патроне для лампы накаливания. Сетевых вилок и розеток. Изучение герконов. Что такое конденсатор. Как он устроен. Формула емкости. Переменные и подстрочный конденсатор. Электролитический конденсатор. Применение конденсаторов как датчиков. УГО конденсаторов. Графики скорости заряда и разряда. Формула времени для RC цепи. Влияние емкости на форму сигнала на примере прямоугольных импульсов. Буквенно-цифирные обозначения величины емкости на корпусе конденсатора. Индуктивность. Формулы индуктивности и силы цилиндрического соленоида. потока ДЛЯ Применение электромагнитов и соленоидов (удержание грузов, клапана, замки). УГО катушки индуктивности и электромагнита. Реле. Конструкция, принцип работы и УГО. Намотка простейшего электромагнита с сердечником и его

испытания. Испытания заводских электромагнитов (обмотки реле). Изучение конструкции солеродного клапана. Испытания клапана. Изучение конструкции стрелочных измерительных приборов. Расчёт резистора для переделки микроамперметра в вольтметр. Расчёт шунта для переделки миллиамперметра в микроамперметр. Изготовление новой шкалы. Добавление ламповой подсветки шкалы. Простая автоматика на основе замыкания цепи стрелкой измерительного прибора.

Блок 2. Готовые аналоговые схемы и модули.

Конструкция, виды и принцип работы пассивных RC фильтров. Конструкция и принцип работы активных RC фильтров. Конструкция и принцип работы пассивных LC фильтров (колебательных контуров). Сборка простых пассивных RC фильтров и изучения их влияние на сигналы различной формы. Расчёт величин элементов для сборки фильтра на звуковые частоты. Сборка и тестирование рассчитанных фильтров. Сборка каскадов из пассивных фильтров. Сборка простых активных RC фильтров и изучения их влияние на сигналы различной формы. Сравнение их эффективности с эффективностью пассивных фильтров. Сборка простой светомузыки из рассчитанных ранее простых пассивных фильтров.

Практическая часть

Практическое занятие №1. Сборка схемы, разработанной по индивидуальному заданию.

Практическое занятие №2. Сборка схемы с компаратором, датчиками уровня света и температуры.

Практическое занятие №3. Сборка простых пассивных RC фильтров и изучения их влияние на сигналы различной формы.

Практическое занятие №4. Сборка простых активных RC фильтров и изучения их влияние на сигналы различной формы.

Практическое занятие №5. Сборка простой светомузыки из рассчитанных ранее простых пассивных фильтров.

Практическое занятие №6. Разработка схемы по индивидуальному заданию.

Контрольная работа по теме 2

ТЕМА 3. РОБОТОТЕХНИКА НА БАЗЕ ARDUINO

Блок 1. Подключение внешних устройств к Arduino.

Архитектура и интерфейс контроллера (экран, кнопки управления модулем, индикатор состояния, порты, элементы питания), интерфейс программного обеспечения для ПК. Типы моторов и управление ими, операторы действия, управление операторами, циклы, управление колесной тележкой, многозадачность, длинна окружности, связь пройденного пути с оборотами двигателя, операторы действия (переключатель), база данных на основе оператора действия «переключатель». Подключение к ПК. Правила подключения внешних устройств и плат расширения. Светодиод. ШИМ. Работа

с монитором порта. Датчик нажатия. Пьезоэффект и звук. Матричная клавиатура. Потенциометр и АЦП. Фоторезистор. Макет автоматического светильника. Бесконтактная линейка на базе инфракрасного дальномера. Интерфейсы UART, SPI, I2C. Семи сегментный индикатор. Светодиодная матрица. ЖК-индикатор. Датчик измерения температуры и влажности. Реле. Сервоприводы. Шаговый двигатель.

Блок 2. Обработка сигналов датчиков. Робототехническое устройство на базе Arduino.

Ультразвуковой датчик расстояния, датчик цвета, датчик касания, распознавание цвета. Подключение электронных компонентов колесной платформы. Управление двигателем. Реализация алгоритмов передвижения. Движение с использованием информации от датчиков. Ультразвуковой дальномер. Датчики освещенности. ИК управление роботом. Радар. Объезд препятствия. Защита от падения со стола.

Блок 3. Робототехническое устройство на базе Arduino

Подключение электронных компонентов колесной платформы. Управление двигателем. Реализация алгоритмов передвижения. Движение с использованием информации от датчиков. Ультразвуковой дальномер. Датчики освещенности. ИК управление роботом. Радар. Объезд препятствия. Защита от падения со стола.

Практическая часть

Практическое занятие № 1. Программы управления светодиодом.

Практическое занятие № 2. Программы, реализующие ввод и обработку цифровых и аналоговых сигналов.

Практическое занятие № 3. Программа управления светодиодом в режиме ШИМ.

Практическое занятие № 4. Программа управления датчиком нажатия. Разработка алгоритма для счетчика нажатий

Практическое занятие № 5. Программа управления пьезодинамиком.

Практическое занятие № 6. Программа управления матричной клавиатурой.

Практическое занятие № 7. Программа управления потенциометром.

Практическое занятие № 8. Программа для автоматического светильника на базе фоторезистора.

Практическое занятие № 9. Программа для бесконтактной линейки на базе инфракрасного дальномера.

Практическое занятие № 10. Программа управления семисегментным индикатором.

Практическое занятие № 11. Программа управления светодиодной матрицей.

Практическое занятие № 12. Программа управления ЖК-индикатором.

Практическое занятие № 13. Программа управления сервоприводом и шаговым двигателем.

Практическое занятие № 14. Программа управления колесной платформой с установленными датчиками. Реализация алгоритмов объезда препятствия, защиты от падения со стола, нахождение препятствия и следование к нему с использованием технологии радара.

Контрольная работа по теме 3

ТЕМА 4. ЗНАКОМСТВО С АЛГОРИТМАМИ РОБОТА.

Блок 1. Основные понятия кинематики.

Механика, понятие механизма, определение кинематики, кинематические пары, кинематические схемы, понятие движения, виды движения, траектория движения, путь, перемещение, понятие скорости, понятие ускорения.

Блок 2. Простые механические системы.

Зубчатые передачи. Передаточное отношение и передаточное число. Изучение влияния геометрических параметров элементов простых механизмов на их силовые и кинематические характеристики. Подготовка к выполнению творческого задания.

Практическая часть

Практическое занятие № 1. Сборка рычажного механизма. Исследование типов движения элементов рычажного механизма.

Практическое занятие № 2. Сборка модели колесной тележки с бортовым типом поворота и бортовым редуктором, испытания скорости движения.

Практическое занятие № 3. Сборка модели колесной тележки с бортовым типом поворота, исследование траектории движения.

Практическое занятие № 4. Сборка модели ручной или автоматизированной лебедки, расчет максимальной грузоподъемности лебёдки.

Практическое занятие № 5. Сборка модели двухступенчатого редуктора (мультипликатора), анализ кинематических и силовых параметров механизма.

Практическое занятие № 6.Разработка и сборка механизма по заданной кинематической схеме и с известными выходными параметрами (скорость вращения, передаваемое усилие).

Практическое занятие № 7. Анализ конструкций механизмов, разработанных группой.

Контрольная работа по теме 4

ТЕМА 5. ОСНОВЫ ТРЕХМЕРНОГО МОДЕЛИРОВАНИЯ, МОДЕЛИРОВАНИЕ ДЕТАЛЕЙ МАШИН ПРОСТЫХ МЕХАНИЗМОВ.

Блок 1. Эскизы и чертежи. Основы работы в графических редакторах.

Понятие эскиза, типы линий, построение перпендикуляров, построение касательных линий к окружности, способы деления угла на части, построение сопряжений двух прямых окружностью, образование проекций, типы проекций, проецирование тел на три плоскости.

Понятие векторной и растровой графики, знакомство с интерфейсом программы Inkscape, типы линий, операции, трассировка изображений, форматы для экспорта на лазерный станок.

Блок 2. Основы проектирования сборок.

Особенности применения материалов, листовые материалы, детали, особенности моделирования для трехмерной печати, герметичность корпусов. Понятие сборки, сопряжения деталей, ограничения, подвижные соединения, зазоры и посадки.

Блок 3. Моделирование элементов подвижных устройств.

Моделирование зубчатых колёс. Модуль зуба, шаг зуба, число зубьев, делительный диаметр, межосевое расстояние, плагины для генерации зубчатых колес Компас 3D. Компоновка устройств, прямой и обратный метод проектирования сборок, связи элементов (сопряжения) сборки, корпусы приводов, корпусы электронных устройств. компоновка мобильных роботов, проектирование манипулятора, составление спецификаций.

Практическая часть

Практическое занятие № 1. Задание прямой линии на чертеже, ортогональное проецирование прямой и точки на плоскость, построение геометрических фигур по заданным значениям углов и длин.

Практическое занятие № 2. Задание плоскости на чертеже.

Практическое занятие № 3. Нанесение размеров, построение выносных линий, построение угловых размеров.

Практическое занятие № 4. Построение разрезов и сечений в проекционной связи.

Практическое занятие № 5. Обозначения стандартных изделий: болт, гайка, подшипник, создание спецификации.

Практическое занятие № 6. Запуск программы Inkscape, основные инструменты, импорт и трассировка изображений.

Практическое занятие № 7. Построение развертки коробки (корпуса).

Практическое занятие № 8. Основные функции Компас 3D, ориентация видов, импорт деталей. Создание эскиза, операция выдавливания и ее вариации, построение простых фигур.

Практическое занятие № 9. Операция вращения, построение модели тора, цилиндра, сферы. Использование многоконтурного эскиза для группы операций (выдавить затем вырезать).

Практическое занятие № 10. Ребро жесткости. Оболочка (shell). Пазы и отверстия.

Практическое занятие № 11. Создание разъемного корпуса для электроприбора.

Практическое занятие № 12. Проектирование деталей в сборке. Создание сопрягаемых отверстий. Создание сборки из двух и более элементов, создание сопряжений (joint) между компонентами.

Практическое занятие № 13. Генераторы зубчатых зацеплений, создание пары зацепления по заданным параметрам с помощью приложения.

Контрольная работа по теме 5. Итоговая контрольная работа.

3. УЧЕБНО-ТЕМАТИЧЕСКИЙ ПЛАН 8 КЛАССА

8 класс, 64 часов, 2 часа в неделю

Nº	Наименование тем и блоков	Общее количество учебных часов	Teop.	Практ.
	Тема 1 ТБ при работе в кабинете	4	2	0
Блок 1	Техника безопасности	2	2	0
	Контрольная работа по теме 1	2		
	Тема 2 Изготовление и настройка робота	18	4	12
Блок 1	Шасси для робота. Вариации и особенности.	4	2	2
Блок 2	Построение робота на различных шасси	6	2	10
	Контрольная работа по теме 2	2		
	Тема 3 Знакомство с электрическим приводом	14	4	8
Блок 1	Электрический привод с коллекторным двигателем	2	2	0
Блок 2	Электрический привод с шаговым двигателем	6	2	4
Блок 3	Электрический привод с бесколлекторным двигателем	4	2	2
	Контрольная работа по теме 3	2		
	Тема 4 Расчет и конструирование деталей машин	12	2	8
Блок 1	Проектирование наземного мобильного робота	10	2	8
	Контрольная работа по теме 4	2		
	Тема 5 Проектирование и изготовление робота	14	6	6

No	Наименование тем и блоков	Общее количество учебных часов	Teop.	Практ.
Блок 1	Проектирование и изготовление корпуса/деталей для наземного мобильного робота.	12	2	10
	Контрольная работа по теме 5	2		
	Итоговая контрольная работа	2		
	Всего	64		

СОДЕРЖАНИЕ ПРОГРАММЫ 8 КЛАСС

ТЕМА 1. ТБ ПРИ РАБОТЕ В КАБИНЕТЕ.

Блок 1. Техника безопасности.

Оборудование учебного кабинета. Техника безопасности. Средства индивидуальной защиты. Инструменты. Станки. Правила поведения на занятиях.

Контрольная работа по теме 1.

ТЕМА 2. ИЗГОТОВЛЕНИЕ И НАСТРОЙКА РОБОТА.

Блок 1. Шасси для робота. Вариации и особенности.

Возможности гусеничного, колёсного шасси. Особенности конструкции. Особенности управления.

Блок 2. Готовые аналоговые схемы и модули.

Построение робота на основе готового гусеничного, колёсного шасси. Разработка собственного варианта гусеничного шасси.

Контрольная работа по теме 2

ТЕМА 3. ЗНАКОМСТВО С ЭЛЕКТРИЧЕСКИМ ПРИВОДОМ

Блок 1. Электрический привод с коллекторным двигателем

Конструкции и принцип работы коллекторных электрических двигателей. Их достоинства и недостатки. Структура и принцип работы системы управления электроприводом с коллекторным двигателем.

Блок 2. Электрический привод с шаговым двигателем

Конструкции и принцип работы шаговых электрических двигателей. Их достоинства и недостатки. Структура и принцип работы системы управления электроприводом с шаговым двигателем.

Блок 3. Электрический привод с бесколлекторным двигателем

Конструкции и принцип работы модельных бесколлекторых электрических двигателей. Их достоинства и недостатки. Структура и принцип работы системы управления электроприводом с бесколлекторным двигателем

Практическая часть

Практические занятия № 1. Знакомство с конструкцией коллекторного электрического двигателя и его запуск. Расчёт электрического привода и выбор коллекторного электрического двигателя.

Практические занятия № 2. Знакомство с конструкцией шагового электрического двигателя и его запуск. Расчёт электрического привода и выбор шагового электрического двигателя. Испытания и наладка полученной системы управления электрическим приводом.

Практические занятия № 3. Знакомство с конструкцией бесколлекторого электрического двигателя и его запуск. Расчёт электрического привода и выбор бесколлекторого электрического двигателя. Моделирование системы

управления и выбор её компонентов. Испытания и наладка полученной системы управления электрическим приводом.

Контрольная работа по теме 3

ТЕМА 4. РАСЧЕТ И КОНСТРУИРОВАНИЕ ДЕТАЛЕЙ МАШИН Блок 1. Проектирование наземного мобильного робота.

Разработка технического задания, компоновочные схемы, кинематические схемы, подбор электродвигателя, схемотехника, математическая модель движения, программирование микроконтроллеров, проектирование зубчатых передач, работа с датчиками, базы данных.

Практическая часть

Практическое занятие № 1 Анализ функциональности и условий движения мобильного робота.

Практическое занятие № 2. Компоновка мобильного робота, проектирование кинематики рабочих органов и их электромеханического привода.

Практическое занятие № 3. Проектный расчет электромеханического привода рабочих органов. Проектирование корпусных элементов и остова устройства.

Практическое занятие № 4. Математическая модель движения мобильной платформы. Разработка алгоритмов управления мобильной платформой.

Практическое занятие № 5. Разработка алгоритма управления мобильной платформой.

Контрольная работа по теме 4

ТЕМА 5. ОСНОВЫ ТРЕХМЕРНОГО МОДЕЛИРОВАНИЯ, МОДЕЛИРОВАНИЕ ДЕТАЛЕЙ МАШИН ПРОСТЫХ МЕХАНИЗМОВ.

Блок 1. Проектирование и изготовление корпуса/деталей для наземного мобильного робота.

Моделирование корпусных деталей. Модуль зуба, шаг зуба, число зубьев, делительный диаметр, межосевое расстояние, плагины для генерации зубчатых колес Компас 3D. Компоновка устройств, прямой и обратный метод проектирования сборок, связи элементов (сопряжения) сборки, корпусы приводов, корпусы электронных устройств. компоновка мобильных роботов, проектирование наземного мобильного робота, составление спецификаций.

Практическая часть

Практическое занятие № 1. Нанесение размеров, построение выносных линий, построение угловых размеров.

Практическое занятие № 2. Построение разрезов и сечений в проекционной связи.

Практическое занятие № 3. Обозначения стандартных изделий: корпус, гайка, подшипник, создание спецификации.

Практическое занятие № 4.Создание разъемного корпуса.

Практическое занятие № 5. Проектирование деталей в сборке. Создание сопрягаемых отверстий. Создание сборки из двух и более элементов, создание сопряжений (joint) между компонентами.

Контрольная работа по теме 5.

Итоговая контрольная работа.

3 ОЦЕНОЧНЫЕ МАТЕРИАЛЫ

Примеры заданий экзамена (теория)

7 КЛАСС

- Вопрос 1. Основные элементы логических схем.
- Вопрос 2. Что такое триггер. Типы триггеров.
- Вопрос 3. Работа с последовательным портом. Прием и передача строк.
- Вопрос 4. Написать программу, подсчитывающую количество импульсов, с выводом результата в Монитор порта, если после последнего импульса прошло более 5 секунд.
- Вопрос 5. Что такое конечно-элементная модель.
- Вопрос 6. Что такое делительный диаметр зубчатого колеса.
- Вопрос 7. Назовите критерий выбора материала для 3D-печати зубчатых колес.
- Вопрос 8. Дайте определение модуля зубчатого колеса.
- Вопрос 9. Как влияет увеличение радиуса начальной окружности кулачка на угол давления.

8 КЛАСС

- Вопрос 1. Назовите типы электродвигателей.
- Вопрос 2. Типовая структура системы управления электроприводом.
- Вопрос 3. Способы расширения количества входов от АЦП ESP8266.
- Вопрос 4. Настройка ESP8266 в качестве точки доступа Wi-fi.
- Вопрос 5. Определите число степеней свободы человеческой руки без учета подвижности в пальцах.
- Вопрос 6. Минимальное число степеней свободы манипулятора, перемещающего шар.
- Вопрос 7. Какую форму имеет рабочее пространство руки человека.
- Вопрос 8. Посчитайте передаточное отношение зубчатой передачи, изображенной на кинематической схеме, предложенной преподавателем.
- Вопрос 9. Назовите критерии подбора подшипников.

4 СПИСОК ЛИТЕРАТУРЫ

- 1. Arduino. Информационно-справочный портал [Электронный ресурс] URL: https://www.arduino.cc/
- 2. Raspberry pi. Информационно-справочный портал [Электронный ресурс] Режим доступа: URL:https://www.raspberrypi.org/
- 3. Анурьев, В.И. Справочник конструктора-машиностроителя: в 3 т. / В.И. Анурьев. Под ред. И. Н. Жестковой. 8-е изд., перераб. и доп. М.: Машиностроение, 2001.
- 4. Ардуино на русском. Информационно-справочный портал [Электронный ресурс] Режим доступа: URL: https://www.arduino.ru/
- 5. Бейктал Джон [Beyctal John] Конструируем роботов на Arduino. Первые шаги / Джон Джон [John Beyctal]; пер. с англ. О. А. Трефиловой. М.: Лаборатория знаний, 2016. 320 с.
- 6. Бейктал Джон [Beyctal John] Конструируем роботов от А до Я. Полное руководство для начинающих / Джон Джон [John Beyctal]; пер. с англ. О. А. Трефиловой. М.: Лаборатория знаний, 2018. 394 с.
- 7. Блум Джереми [Blum Jeremy] Изучаем Arduino: инструменты и методы технического волшебства / Джереми Блум [Jeremy Blum]; пер. с англ. СПб.: БХВ-Петербург, 2017. 336 с.
- 8. Владимир, В.М. Электрический привод / В.М. Владимир М.: ИНФРА- М, 2019. 364 с.
- 9. Дмитрова М.И. 33 схемы с логическими элементами И-НЕ / М.И. Дмитрова. Ленинград: Энергоатомиздат, 1988. 112 с.
- 10. Жмудь, В.А. Моделирование и численная оптимизация замкнутых систем автоматического управления в программе VisSim: учебное пособие / В.А. Жмудь. Новосибирск: НГТУ. 2012. 124 с.
- 11. Злотин, Б.Л., Зусман, А.В. Месяц под звездами фантазии / Б.Л. Злотин, А.В. Зусман— Кишенев: Лумина, 1988. 276 с.
- 12. Кириченко, П.Г. Электроника. Цифровая электроника для начинающих / П.Г. Кириченко. СПб.: БХВ-Петербург, 2019. 176 с.
- 13. Ковалев, И.М. Кинематический расчет электромеханического привода. Методические указания по выполнению расчетных заданий и курсовых проектов по деталям машин и механике. / И.М. Ковалев Барнаул: Изд-во Алт Γ ТУ, 2005. 26 с.
- 14. Ковалев, И.М. Расчет и проектирование ременных передач. Методические указания к курсовому проектированию по деталям машин и основам конструирования. / И.М. Ковалев, С.Г. Цыбочкин Барнаул: Изд-во АлтГТУ, 2008.-35 с.
- 15. Коршунов, Н.М. Право интеллектуальной собственности / Н.М. Коршунов, Н.Д. Эриашвили, В.И. Липунов и др.; ред. Н.Д. Эриашвили; под ред. Н.М. Коршунова. М. Юнити-Дана, 2015. 327 с.

- 16. Кузнецов, И.Н. Основы научных исследований / И.Н. Кузнецов М.: Издательско-торговая корпорация «Дашков и K° », 2017. 283 с.
- 17. Ларионов, И.К. Защита интеллектуальной собственности / И.К. Ларионов, М.А. Гуреева, В.В. Овчинников и др.; под ред. И.К. Ларионова, М.А. Гуреевой, В.В. Овчинникова. М.: Издательско-торговая корпорация «Дашков и K° », 2018. 256 с.
- 18. Матронина, Л.Ф. Философия техники / Л.Ф. Матронина, Г.Ф. Ручкина, О.Б. Скородумова. М.: МИРЭА, 2015. 156 с.
- 19. Механика в робототехнике. Информационно-справочный портал [Электронный ресурс] Режим доступа: URL: http://insiderobot.blogspot.com
- 20. Момот, М.В. Мобильные роботы на базе Arduino / М.В. Момот. СПб.: БХВ-Петербург, 2017. 336 с.
- 21. Монк Саймон [Monk Simon] Мейкерство. Arduino и Raspberry Pi. Управление движением, светом и звуком / Саймон Монк [Simon Monk]; пер. с англ. СПб.: БХВ-Петербург, 2017. 336 с.
- 22. Нестеренко, А.А. Мастерская знаний. Учебно-методическое пособие для педагогов / А.А. Нестеренко. М.: Book-in-file, 2013. 603 с.
- 23. Нестеренко, А.А. Страна загадок. Книга о развитии творческого мышления у детей / А.А. Нестеренко. М.: ИГ «Весь», 2017. 192 с.
- 24. Нестеренко, А.А. Ура! У нас проблемы! / А.А. Нестеренко. М.: Bookin-file, 2013.-34 с.
- 25. Овсяницкая, Л.Ю., Курс программирования робота EV3 в среде Lego Mindstorms EV3. 2-е изд., перераб. и доп / Л.Ю. Овсяницкая, Д.Н. Овсяницкий, А.Д. Овсяницкий. М.: Издательство «Перо», 2016. 300 с.
- 26. Овсяницкая, Л.Ю., Овсяницкий Д.Н., Овсяницкий А.Д., Алгоритмы и программы движения робота Lego Mindstorms EV3 по линии. / Л.Ю. Овсяницкая, Д.Н. Овсяницкий, А.Д. Овсяницкий. М.: Издательство «Перо», 2015.-168 с.
- 27. Овсяницкая, Л.Ю., Овсяницкий Д.Н., Овсяницкий А.Д., Машинное зрение в среде Lego Mindstorms EV3 с использованием камеры Pixy (CMUcam5) / Л.Ю. Овсяницкая, Д.Н. Овсяницкий, А.Д. Овсяницкий. Электронная книга, 2016. 168 с.
- 28. Овсяницкая, Л.Ю., Овсяницкий Д.Н., Овсяницкий А.Д., Пропорциональное управление роботом Lego Mindstorms EV3 / Л.Ю. Овсяницкая, Д.Н. Овсяницкий, А.Д. Овсяницкий. М.: Издательство «Перо», 2015.-188 с.
- 29. Панкратов, В.В. Автоматическое управление электроприводами: учебное пособие, ч. 1. Регулирование координат электроприводов постоянного тока / В.В. Панкратов. Новосибирск: НГУ, 2013. 200 стр.
- 30. Перельман, Я.И. Занимательная механика / Я.И. Перельман, под ред. И.Я. Штаермана. М.: Физматгиз, 1959. 184 с.

- 31. Перельман, Я.И. Занимательная физика. в 2 т. / Я.И. Перельман. М.: Юрайт, 2018.-192 с.
- 32. Петин, В.А. Проекты с использованием контроллера Arduino. 2-е изд., перераб. и доп. / В.А Петин. СПб.: БХВ-Петербург, 2015. 457 с.
- 33. Платт Чарльз [Platt Charles] Электроника для начинающих. 2-е изд., перераб. и доп. / Чарльз Платт [Charles Platt]; пер. с англ. Санкт-Петербург: БХВ-Петербург, 2017 416 с.
- 34. Ричардсон Мэтт [Richardson Matt], Шон Уоллес Шон [Shawn Wallace]. Заводим Raspberry Pi / Мэтт Ричардсон [Matt Richardson], Уоллес Шон [Wallace Shawn]. пер. с англ. М.: Амперка, 2013.-230 с.
- 35. Роботы, робототехника и микроконтроллеры. Информационносправочный портал [Электронный ресурс] — Режим доступа: URL: https://myrobot.ru
- 36. Сворень, Р.А. Шаг за шагом. Транзисторы / Р.А. Сворень. М.: Детская литература, 1971-342 с.
- 37. Сворень, Р.А. Электричество шаг за шагом / Р.А. Сворень. М.: фонд «Наука и жизнь», 2012-460 с.
- 38. Сворень, Р.А. Электроника шаг за шагом: практическая энциклопедия юного радиолюбителя / Р.А. Сворень. М.: Детская литература, 1991. 446 с.
- 39. Тарасов, Л.В. Механика. Продвинутый курс: Для старшеклассников и студентов / Л.В Тарасов. М.: Ленанд, 2017. 712 с.
- 40. Физическая смекалка: Занимательные задачи и опыты по физике для детей / Я.И. Перельман и др. М.: Омега, 1994. 256 с.
- 41. Хилькевич, С.С. Физика вокруг нас / С.С. Хилькевич. М.: Наука, $1985.-160~\mathrm{c}.$
- 42. Черниченко, Г.Т. Простая автоматика: рассказы об автоматики и автоматах-самоделках / Г.Т. Черниченко. Ленинград: Детская литература, 1989.-127 с.
- 43. Шейнблит, А.Е. Курсовое проектирование деталей машин: Учеб. пособие. Изд-е 2-е, перераб. и дополн. / А.Е. Шейнблит. Калининград: Янтар. Сказ, 2002. 454 с.
- 44. Шелякин, В.П. Электрический привод: краткий курс 2-е изд., испр. и доп. / В.П., Шелякин, Ю. М. Фролов. М.: Юрайт, 2018. 273 с.
- 45. Шичков, Л.П. Электрический привод. Учебник и практикум. 2 издание. / Л.П Шичков. М.: Юрайт, 2017 330 с.
- 46. Шойко, В.П. Автоматическое регулирование в электрических системах: учебное пособие / В.П. Шойко. Новосибирск: НГТУ, 2012. 195 с.

ПОЯСНЕНИЕ ФОРМ КОНТРОЛЯ ОСВОЕНИЯ ПРОГРАММЫ

Итоговый контроль

Экзамен принимает преподаватель или коллектив преподавателей, ведущих предмет. Аттестация проводится в устной или письменной форме по билетам. Преподавателю предоставляется право задавать дополнительные вопросы сверх содержимого билета, а также, помимо теоретических вопросов, давать задачи и примеры, связанные с курсом. Время подготовки обучающегося для последующего ответа не более одного академического часа.

Защита учебного творческого проекта

По окончании курса проходит защита учебного творческого проекта в виде презентации результатов. Проект должен быть направлен на решение актуальных задач в области науки или техники. Во время выполнения проекта учащиеся должны продемонстрировать полученные знания за предыдущие годы обучения в виде комплексного решения. На защите проекта обучающийся представляет свой реализованный проект перед группой и преподавателем по следующему (примерному) плану:

- 1. Тема и краткое описание сути проекта.
- 2. Актуальность проекта.
- 3. Положительные эффекты от реализации проекта, которые получат как сам автор, так и другие люди.
- 4. Ресурсы (материальные и нематериальные), которые были привлечены для реализации проекта, а также источники этих ресурсов.
- 5. Ход реализации проекта.
- 6. Риски реализации проекта и сложности, которые обучающемуся удалось преодолеть в ходе его реализации.

Промежуточный контроль

Контрольная работа может проводиться в письменной форме по билетам, содержащим тестовые и практические задания, или в форме учебного творческого проекта.

Текущий контроль

В результате выполнения самостоятельной работы обучающимся формируется набор отчетов, в которых приводится результат выполнения домашних заданий, выполненных в свободной форме.